
 67

4
The Empirical Study Results

When manually inspecting the code of each target system we found out

three categories of bug-patterns related to the exception handling code of AO

systems: (i) aspects as handlers; (ii) aspects as signalers; and (iii) declare soft

construct – a construct only available in AspectJ language. These three categories

are in a certain degree related, for instance: an aspect signals an exception that

should be handled by a handler aspect which does not catch the exception, due to

the wrong use of declare soft construct. However, we explain each bug pattern

in separate, to focus on the problems that can be the cause of each one.

This chapter details the faults associated with bug pattern discovered in our

work and presents further discussions and lessons learned concerning the

empirical study as a whole.

4.1.
Bug Patterns in the Exception Handling Code of AO Systems

Bug patterns are recurring correlations between signaled errors and

underlying bugs in a program (Allen, 2002). They are related to design anti-

patterns, but bug patterns are directly correlated with faults at source code level.

The inspection of exception paths allowed us to identify several exception-

handling bug patterns that can be classified into three categories. First, the use of

aspects as handlers led to some scenarios in which the catch clauses were moved

to aspects, the so-called exception handling aspects or handler aspects. However,

these aspects did not catch the exceptions they were intended to handle. Second,

the application of aspects as signalers often implied aspects signaling exceptions

to which no handler was defined. Such exceptions flew through the system and

became uncaught exceptions or were caught by an existing handler in the code

(usually by subsumption). Third, the use of declare soft construct was often

problematic: due to its complex semantics, almost all developers performed

similar mistakes when using this construct in almost all the analyzed releases.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 68

Table 7 summarizes the bug pattern distribution in relation to the analyzed

systems. Next sections describe the bug patterns shown in this table. For each of

them, we provide a description and code examples extracted from target systems.

JHotDraw AO

Bug patterns V1 V9 V4 V6 V1

 Inactive Handler Aspect � � � �

 Late Binding Handler Aspect �

 Obsolete Handler in the Base Code. �

 Solo Signaler Aspect � � �

 Unstable Exception Interfaces. � � � �

 Handler Mismatch. �

 Solo Declare Soft Statement. � �

 Unchecked Exception Cause �

 The Precedence Dilemma. � �

Health Watcher AO Mobile Photo AO

Aspects as Handlers

Aspects as Signalers

Exception Softening

Table 7. Distribution of the bug patterns per system.

4.1.1.
Aspects as Exception Handlers

The role of aspects as handlers can be classified into two: (1) the aspect can

handle its own internal exceptions; and (2) and it can handle external exceptions

thrown by other aspects or classes. Aspects can be used to modularize the

handlers of external exceptions relative to other crosscutting concerns

implemented as aspects. The latter occurred in both Health Watcher and Mobile

Photo systems. It can also be used to modularize part of exception handling from

the base code (as in Mobile Photo). Such exception handling aspects are

implemented using around and after throwing advice. The first two bug

patterns presented next are related to aspects that act as external exception

handlers, the last one is related to aspects as internal handlers.

Inactive Handler Aspect. This kind of fault happens when an handler aspect

does not handle the exception that it is intended to handle. The cause is a fault on

the pointcut expression. Such fault prevents the handler of advising the join point

in which an exception should be handled. This exception either becomes uncaught

or is mistakenly caught by an existing handler (unintended handler action). This

bug pattern was only detected in Health Watcher and Mobile Photo systems, since

the exception handling concern was not aspectized in JHotDraw. The fragility of

the pointcut language, and the number of different and very specific join points to

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 69

be intercepted by the handlers aspects leads to such bug pattern. The code snippet

extracted from Mobile Photo illustrates this problem:

 aspect UtilAspectEH{

// the pointcut was

 pointcut readImageAsByteArray(String imageFile):

(call(public void Class.getResourceAsStream(String))

&&(args(imageFile)));

// the pointcut should be

pointcut readImageAsByteArray(String imageFile):

call(public java.io.InputStream Class.

getResourceAsStream(String))&&(args(imageFile)));

 ...

 }

Late Binding (or Starved) Handler Aspect. This bug pattern occurred in the

9
th

 release of Health Watcher AO version. The concurrency control concern was

implemented as an aspect, which could possibly throw an instance of

TransactionException. A specific aspect, called

HWTransactionExceptionHandler, was defined to handle this exception (see

Figure 4), and although the pointcut expression was correctly specified, the

handler intercepted a point in which the exception was caught beforehand by a

“catch all clause” in the base code as illustrated in Figure 14. We can observe

from this example that the exception did not reach the correct handler due to a

catch clause (present in the mB method) which captures the exception occurrence

in the base code. This problem is difficult to diagnose, the compiler will give no

warning to the developer since the HWTransactionExceptionHandler aspect

intercepts the correct join points in the code (where the exception should be

caught). This explains why this fault remained until version V9 of the HW

system. Moreover, even if there is no “catch all” clause between signaler and

handler aspects during development, such clause may be added during a

maintenance task
14

.

14 It the handler was defined in the base code, and if TransactionException was a checked

exception the compiler would warn the developer that the handler on the base code was inactive.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 70

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

HandlerEA

HandlerEC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :

crosscutsmethod call protected region Exception propagation

Legend :

Figure 14. Schematic view of the Late Binding Handler.

Obsolete Handler in the Base Code. When an aspect handles or softens an

exception e, thrown by an application method, if there was a handler previously

defined for it on the base code, such handler will become obsolete - since e can no

longer be reach it. In this study four exceptions handled by aspects generated

obsolete handlers on the base code. The code snippet below was extracted from

the JHotDraw AO version:

 private void readFromStorableInput(String filename) {

try {

 …

 String fDrawing = input.readStorable();

 …

}

catch (IOException e) {

 initDrawing();

 showStatus("Error:" + e);

}

catch (org.aspectj.lang.SoftException e) {

showStatus("Error: " + e.getWrappedThrowable());

}

 }

public aspect IOExceptionHandling{

 declare soft: IOException : call (String StorableInput.

 readStorable() throws IOException);

 ...

 }

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 71

In this scenario the method readStorable signals IOException, but

this exception is softened by IOExceptionHandling aspect. As explained

previously, when an exception is softened, the AspectJ weaver handles it and

throws an instance of SoftException which wraps the original exception. As a

consequence the previous handler defined to IOException on the base code is no

longer used. Since it was not removed from the base code and it became an

obsolete handler.

Notice that an obsolete handler may lead to unintended handler actions after

a maintenance task. A handler that was obsolete can mistakenly handle a new

exception that flows from the protected code after a maintenance task. Such

handler may present a wrong error message to the user or, in some cases, silence

the exception (i.e., does not report any information that the exception was handler)

– which is one of the most difficult bugs to diagnose (Miller and Tripathi, 1997).

4.1.2.
Aspects as Exception Signalers

During the manual inspections we found potential faults that can occur

when aspects signal exceptions. They are detailed below.

Solo Signaler Aspect. Solo Signalers are the aspects that signal an exception

and no handler is bound to it. Such an aspect may lead to the same failures caused

by the Inactive Handler Aspect defined in the previous section: an uncaught

exception or an Unintended Handler Action. The Unintended Handler Action

(Miller and Tripathi, 1997) is usually characterized by the exception signaled by

an aspect being handled by subsumption via classes. The code snippet below was

extracted from Health Watcher system, and illustrates the code of an aspect that

handles an exception, but while handling the exception it invokes the

out.close() method which may throw an IOException, which will become

uncaught.

public aspect HWTransactionExceptionHandler {

 void around(HttpServletResponse response) :

 execution(* HWServlet+.do*(HttpServletRequest,

 HttpServletResponse)) && args(.., response) {

 try {

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 72

 proceed(response);

 } catch (SoftException e) {

 …

 PrintWriter out = response.getWriter();

 out.println(HTMLCode.errorPage(…));

 out.close();

 …

 }

 }

}

Unstable Exception Interface. In this study we have observed that aspects

had the ability of destabilizing the exception interface of the advised methods.

Every time a static or dynamic scope is used and the advice may signal an

exception, the exception interface of the method will vary according to the scope

in which a method is called. As a consequence, the same method could raise a

different set of exceptions, even when the method arguments were the same,

depending on the static (e.g. which class called it) or dynamic (information on the

execution stack) scopes. The next code snippet, extracted from AJHotDraw,

exemplifies an unstable exception interface.

pointcut commandExecuteCheckView(AbstractCommand command):

this(command)

 && execution(void AbstractCommand+.execute())

 && !within(*..DrawApplication.*)

 && !within(*..CTXWindowMenu.*)

 && !within(*..WindowMenu.*) && !within(*..JavaDrawApp.*);

 before(AbstractCommand command) :

 commandExecuteCheckView(command) {

 if (command.view() == null) {

 throw new JHotDrawRuntimeException("execute should NOT

 be called when view() == null");

 }

 }

In this case, the execute() method will throw an instance of

JHotDrawRuntimeException depending on the static scope where it is executed.

This exception was not handled in any of the contexts and became uncaught. Most

of the exceptions that were thrown by methods presenting an unstable exception

interface were not adequately handled.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 73

4.1.3.
Softening Exceptions

In AspectJ an advice can only throw a checked exception if “every”

intercepted method can signal it (i.e. declaring it on its throws clause). In other

words, concerning checked exceptions, an advice should follow a rule similar to

the “Exception Conformance Rule” (Matsuoka and Yonezawa, 1993; Miller and

Tripathi, 1997) applied during inheritance, when methods are overridden. As a

result an advice can only throw a checked exception if it is thrown by every

intercepted method.

To bypass this restriction, AspectJ offers the declare soft statement,

which converts (wraps) a given checked exception (in a specific scope) into a

specialized unchecked exception, named SoftException. The syntax is:

declare soft : <someException> : <scope>. The scope is specified by a

pointcut that selects a subset of join points in which the someException exception

will be wrapped. AspectJ is the only AO language that provides a declare soft

construct. As detailed in Section 4.2.1, in Spring AOP and JBoss AOP, advices

are allowed to throw any kind of exception, either checked or unchecked. It is

possible because during the weaving process the weaver converts the exception

interface of every advised method to allow every kind of exception to flow from it

– including a Throwable in its throws clause. This section presets some bug

patterns and also potential error-prone scenarios on the exception handling code

when declare soft statement is used.

Solo Declare Soft Statement. According to the AspectJ documentation

(Colyer, 2004), every time an exception is softened by an aspect, the developer

should implement another aspect that will be responsible for handling the softened

exception. However, this solution is very fragile, since it is up to the programmer

to define a new aspect to handle the exception that was softened, and no message

is shown at compile time to warn the programmer in case s/he forgets to define

this handler aspect. In the Health Watcher and Mobile Photo systems, exceptions

were softened and no handler was defined for them. This led to uncaught

exceptions and unintended handler actions - exceptions caught by subsumption on

the base code. In the code snippet presented in previous section to Solo Signaler

Aspect bug pattern the IOException signaled inside

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 74

HWTransactionExceptionHandler was softened and no handler was defined

for it.

public aspect HWTransactionExceptionHandler {

 // Makes soft all IO exceptions raised in this aspect

 declare soft : IOException :

 within(HWTransactionExceptionHandler+);

 void around(HttpServletResponse response) :

 }

Unchecked Exception Cause. When a checked exception is softened, it is

wrapped in a SoftException object. As mentioned before, in Java-like

languages the type of an exception is used to make the binding between an

exception and its handler. Thus, when wrapping an exception, we are also

wrapping useful information in order to provide a fine-grained action for each

exception. To overcome this limitation, every place that needs to handle a

softened exception, catches the SoftException and unwraps it (through its

getCause() method) in order to compare its cause with every possible exception

that has potentially thrown inside the handler’s context. Such “wrapping” solution

is documented as one of the exception handling anti-patterns (McCune, 2007).

Handler Mismatch. In a version of the Health Watcher system, some

exceptions were softened. However handlers were defined for the exceptions

primitive types (i.e. types before being wrapped in a SoftException). Due to

this Handler Mismatch almost all exceptions signaled by the crosscutting

concerns became uncaught or were caught by unintended handlers. The code

snippet below was extracted from Health Watcher and illustrates this problem.

The HWTransactionManagement aspect softens the exception, and the

HWTransactionExceptionHandler aspect tries to capture the primitive

exception. This bug pattern illustrates an emergent property of a particular

combination of aspects woven into the base program.

public aspect HWTransactionManagement {

 ...

 declare soft: TransactionException:

 call(void IPersistenceMechanism.beginTransaction())…;

}

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 75

public aspect HWTransactionExceptionHandler {

 void around(HttpServletResponse response) :

 execution(* HWServlet+.doGet(HttpServletRequest,

 HttpServletResponse)) && args(.., response) {

 try {

 proceed(response);

 }catch (TransactionException e)

 }

 }

The Precedence Dilemma. This bug pattern occurs when an after

throwing advice is used in combination with a declare soft statement

referring the same pointcut. Only the code related to the declare soft construct

is included on the bytecode. Since both constructions work converting one

exception into another the weaver cannot decide which one should happen first

and as a consequence includes on the bytecode only the code relative to the

declare soft construct. This bug in the language design generates a

SoftException exception that will not be adequately caught. The code snippet

below was extracted from Mobile Photo and illustrates a scenario in which this

problem will occur.

pointcut addImageData():

execution(public void ImageAccessor.addImageData(String,

String, String));

 declare soft: RecordStoreException : addImageData();

 after()throwing(RecordStoreException e)

throws PersistenceMechanismException: addImageData(){

 throw new PersistenceMechanismException();

 }

4.2.
Discussions and Study Constraints

This section provides further discussion of issues and lessons learned while

performing the empirical study described in this chapter and in Chapter 3.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 76

4.2.1.
Representativeness

A first question to be asked is to what extent our findings can be applied to

other systems implemented in other AOP languages. We have investigated other

AOP technologies such as: CaesarJ
15

 (Mezini and Ostermann, 2003), JBoss AOP

16
 (Burke and Brock, 2003) and Spring AOP

17
 (Johnson et al., 2005; Johnson,

2007). Basically, they follow the same join point model as AspectJ, which allows

an aspect to add or modify behavior on join points, potentially adding new

exceptions.

advice can signal
exceptions

advice types that can act as
exception handlers

declare
soft

checked unchecked After throwing after around

AspectJ yes partially yes yes yes yes

CaesarJ no partially yes yes yes yes

JBoss AOP no yes yes yes yes yes

Spring AOP no yes yes yes yes Yes

 * we considered only the ones that can handle exception from the base code

Table 8. AO languages characteristics: advice types and exceptions that may be

thrown from advice.

Table 8 summarizes our analysis regarding exception throwing and handling

mechanisms available in such technologies. This analysis was mainly based on

available documentation, and the development of “toy programs” in each AO

language.

According to Table 8 only AspectJ provides a syntactic element to explicitly

soften checked exceptions (column 1). Thus, the bug patterns related to this

construct (Section 4.1.3) are peculiar to AspectJ. Concerning the nature of

exceptions that may be thrown by advice, all languages allow advice to throw

unchecked exceptions (column 3). In AspectJ and CaesarJ, an advice can only

throw a checked exception if “every” intercepted method can throw it (declaring it

on its throws clause) (column 2). In CaesarJ, only an around advice signature

may throw checked exceptions. In Spring AOP and JBoss AOP languages,

advices may throw checked exceptions, no matter the exceptions that can be

15 http://caesarj.org/
16

 http://www.jboss.org/jbossaop
17

 http://www.springframework.org/

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 77

signaled by the advised methods18. Therefore, all bug patterns associated with

advice as signalers (Section 4.1.2) may occur in systems developed in such

languages. Moreover, all languages allow the definition of aspects that may

handle exceptions thrown by another aspect, or elements of the base code

(columns 4-6). As a consequence, all bug patterns associated with advice as

handlers (Section 4.1.1) can also be found on systems developed in these

languages.

Table 9 below summarizes the characteristics of the pointcut designators

available in each language.

 Pointcut Designators

 Scope

Method-related

Statically Dynamically
Exception-
handling

 call execution within-like withincode-like cflow-like cflowbelow-like handler-like

AspectJ yes yes yes yes yes yes yes

CaesarJ yes yes yes yes yes yes yes

JBoss AOP yes yes yes yes yes yes no

Spring AOP no yes yes no no no no

Table 9. Differences on available pointcut designators.

We can observe that the pointcut designators are very similar in almost all

languages. All languages allow the definition of pointcut designators that delimits

the static scopes (e.g., packages) in which new behavior will be added by aspects

(column 3). The Spring AOP language, is the only solution from the analyzed set

that does not allow the definition of dynamic scopes in a pointcut expression

(column 4-5). Moreover pointcuts in Spring AOP can only intercept the method

execution (column 1). The other languages allow a pointcut expression to

intercept method calls as well as executions. The characteristics of the pointcut

designators available in each language enable occurrence of unstable exceptional

interfaces problem described in the next section.

18 It is possible because the exception interface of every advised method is modified to allow any kind of

exception to flow from it (throws Throwable defines the exception interface of the intercepted methods)

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 78

4.2.2.
Exception Handling vs. AOP Properties

The goal of exception handling mechanisms is to make programs more

reliable and robust. However, we could observe that some properties of AOP may

conflict with characteristics of exception mechanisms. In this study we observed

that quantification and obliviousness properties pose specific pitfalls to the design

of exception handling code. Following, we explain and discuss these pitfalls.

Quantification Property. Aspects have the ability to perform modifications

at specific join points in the program execution where a property holds – an ability

also known as quantification property (Filman and Friedman, 2005). AspectJ

supports quantification via pointcuts and advice. Pointcuts can for instance

intercept the call and execution of methods, through call and execution pointcut

designators respectively (see Chapter 2, Section 2.1.4.1). On exception-aware

systems, such pointcut designators may cause different impact in the exceptional

interfaces of methods. While the execution pointcut affected the exceptional

interface of the advised methods themselves, the call pointcut affected the

exceptional interface of the advised method’s caller. Such impact can also be

influenced by static and dynamic scopes associated with the pointcuts. Static

scopes such as, within and withincode delimit the classes or packages on which

the aspects will inject a new behavior. Dynamic scope constructs (i.e., cflow and

cflowbelow) allow an aspect to effect (or not) a specific point in the code

depending on the information available on the runtime execution stack.

The main consequence of the quantification property in exception-aware

AO systems was that the exception interfaces of methods can vary depending on

where the method was called, even when the method arguments are the same.

Therefore, the same method of a class could raise a different set of exceptions

depending on which object called it or on some information on the execution stack

(in case of cflow and cflowbelow, for example).

The unstable exception interface cannot happen in OO programs since the

set of exceptions thrown by a method cannot vary according to the scope where it

is executed – regarding the arguments are the same. We observed in our study that

in scenarios in which methods presented such unstable exceptional interfaces, the

exceptions signaled on specific scopes by the advised methods often became

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 79

uncaught or were erroneously handled by an existing handler within the base code

– characterizing the unintended handler action. A possible reason is that it is more

difficult for the method’s user to prepare the base code to handle the exceptions

that will be thrown depending on the dynamic or static scope it is executed.

Obliviousness property. The obliviousness property (Filman and Friedman,

2005), which was believed to be a fundamental property for aspect oriented

programming, states that programmers of the base code do not need to be aware of

the aspects which will affect it. It means that programmers do not need to prepare

the base code to be affected by the aspects. However, since there are no

mechanisms to protect the base code from the exceptions that will flow from

aspects, a new exception signaled by the aspect may flow through the system, if

no handler is defined to it. This exception may become uncaught and terminate

the system in an unpredictable way. Even in cases when a handler aspect is

defined for each aspect that can throw an exception (as implemented in the AO

versions of Health Watcher), there is no guarantee that the exception thrown by an

aspect will be handled by the handler aspect defined for it - such exceptions may

be prematurely caught by a handler in the base code, as illustrated on the bug

pattern Late Binding Handler Aspect (Section 4.1.1). Moreover, AspectJ and other

existing AO languages allow the modifications caused by aspects to happen

dynamically. Although this mechanism opens a new realm of possibilities in

software development, it hinders the task of preparing the base code of the

exceptions that can be thrown from aspects. During system execution, it is

difficult to anticipate whether any unintended handler action or uncaught

exception will be caused by the aspects.

4.2.3.
Additional Lessons Learned

AO Refactoring Strategies in Exception-Aware Systems. Many AO

systems nowadays are generated from an OO version in which some crosscutting

concerns are detected and Aspect Oriented Refactoring techniques are used to

convert some crosscutting concerns into aspects. Such AO Refactoring techniques

aim at preserving the behavior while refactoring crosscutting concerns to aspects.

However, we have observed in our study that the AO refactoring approaches

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 80

adopted in the target systems did not preserve the exceptional behavior of the

crosscutting concerns in some situations. The catalogue of bug patterns presented

in this study can be used by such refactoring approaches to prevent some bugs

when refactoring crosscutting concerns to aspects.

Software Maintainability. It is difficult to define at the beginning of a

project which exceptions should be dealt inside the system (Robillard and

Murphy, 2000), the exception handling code is often modified along the system

development and maintenance tasks. As a consequence, some bugs avoided

during AO refactoring, such as the Late Binding Handler Aspect (Section 4.1.1),

may accidentally be included during a maintenance task - breaking an existing

exception handling policy. The exception handling policy comprises a set of

design rules that defines the system elements responsible for signaling, handling

and re-throwing the exceptions; and the system dependability relies on the

obedience of such rules. Reasoning about the exceptional path, looking for

potential-faults on the exception handling code, can quickly become unfeasible if

carried out manually – due to the complexity and the huge number of exception

paths to be followed. For this reason we need tools to help developers (i)

understanding the impact of aspect weaving on the existing exception handling

policy, and (ii) finding bugs in the exceptional handling code during maintenance

tasks.

Finding Bugs in Exception Handling Code of AO Programs. Testing

exception handling code is inherently difficult (Bruntink et al., 2006), due to the

huge number of possible exceptional conditions to simulate in a system and

difficulty associated with simulating most of such scenarios. Hence, a valuable

strategy for finding faults in the exception handling code can be to statically look

for them. The exception flow analysis tool developed in our work used to detect

uncaught exceptions, could be extended in order to include some of the bug

patterns described in this work. A similar strategy was adopted by Bruntink et al.

(2006) to find faults on idiom based exception handling code.

New Interactions between Aspects and Classes. The works presented so far

on the interactions between aspects and classes, focus on the normal control flow

and on information extracted from data-flow analysis. In this study we could

observe that new kinds of interaction, between aspects and classes, emerged from

the exceptional scenarios (e.g., one class catches one exception thrown by an

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 81

aspect). Such Signaler-Handler relationships between the elements of an AO

system can be used as a coupling metric that exists between these elements on

exceptional scenarios. We are currently refining the categorization of the

Signaler-Handler relationships derived from this study.

4.3.
Summary

In this chapter we presented the results of our empirical study. A set of bug

patterns related to the exception handling code of AspectJ systems is presented.

They are presented in three categories: bugs related to aspects that act as

exception signalers, bugs on aspects that acts as exception handlers, and bugs on

an AspectJ specific construct associated with the exception handling code (i.e.

declare soft construct). This chapter also presented to which extent the bug

patterns presented here can be generalized to other AO languages: Spring AOP,

JBoss AOP and CaesarJ. Moreover, lessons learned during the empirical study

were discussed in detail.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

